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Abstract 

The rotational form factor will be derived for the most 
general case of crystal, site and molecular symmetry 
(including non-crystallographic molecular point 
groups). Linear combinations of spherical harmonics 
adapted to the proper symmetry are used throughout. 
Their number as well as the number of free parameters 
of the orientational probability function is computed. 
Rules are given about how many parameters can be 
determined independently. Their number depends on 
the geometry of the molecule. The paper also includes 
the case of several symmetrically equivalent orientation- 
ally disordered molecules per unit cell. 

1. Introduction 

Orientational disorder in crystals containing rigid 
molecules has been known since the early thirties: 
Kracek, Posniak & Hendricks (1931) observed in 
NaNO 3 that 'the rotational degree of freedom of the 
nitrate group about an axis normal to the plane of the 
group is apparently the one excited in the region 150 to 
280 ° (C)'. Bijvoet & Ketelaar (1932) offered an 
explanation of the scattering in terms of the form factor 
of rotating atoms which is expressed by the Bessel 
function J0. A much more detailed mathematical 
analysis of the scattering from the one-dimensional (i.e. 
axial) and the three-dimensional hindered rotator was 
given in a series of papers by King & Lipscomb (1950), 
Atoji, Watanab+ & Lipscomb (1953) and Atoji & 
Lipscomb (1954). These authors applied a hindering 
potential to calculate the orientation probability which, 
in turn, was used for the average structure factor F. 
Atoji (1958) suggested a spherical Fourier method: the 
scattering density at a cubic lattice site was described 
by the 'cubic harmonics' introduced by Von der Lage 
& Bethe (1947), i.e. by symmetry-adapted spherical 
harmonics. Kurki-Suonio & Meisalo (1967) applied 
functions of this kind adapted to tetrahedral and cubic 
symmetry for an analysis of the non-spherical electron 
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distribution in atoms. Press & Hiiller (1973) and Press 
(1973) gave a calculation of the rotational form factor 
of a molecule from first principles: the scattering-length 
density is described in a molecular frame first, and then 
in a frame fixed within the crystal. The connection 
between the two is managed by an orientational 
probability density function, the mathematical form of 
which depends on both the molecular and the site 
symmetry. The analysis was extended recently by 
considering the consequences of the fact that the 
orientational distribution function has to be positive 
definite (Hiiller & Press, 1979). Correlations between 
the orientation and the position of a molecule have been 
included in the theory also (Press, Grimm & Hfiller, 
1979). A review of experimental work applying the 
method is given by Hfiller & Press (1979). Amoureux 
& Bee (1980) found it necessary in their analysis of 
adamantane to apply cubic harmonic functions up to 
12th order. A group-theory method for deriving a 
complete set of symmetry-adapted basis functions has 
been given recently by Yvinec & Pick (1980). It was 
applied to neutron scattering and orientational 
dynamics in plastic molecular crystals (Pick & Yvinec, 
1980). 

The present paper originated from experimental 
work on the plastic phase of hexachloroethane (Ger- 
lach, 1979; Gerlach, Hohlwein, Prandl & Schulz, 
1981). In the course of the analysis it turned out that 
orientationally disordered molecules of low symmetry 
at a high-symmetry lattice site have an orientational 
probability density with a larger number of free 
parameters than, say, a cubic molecule at a cubic site 
which apparently is the only case which has been 
treated systematically in the literature so far. 

Some basic definitions will be given in {} 2. {} 3 
contains the derivation of the rotational form factor of 
a molecule with arbitrary point group at a site with 
arbitrary site (point) group. The meaning of the free 
parameters is also given. Methods of group represen- 
tation theory allow the computation of the number of 
free parameters ({}4). Not all of them can be 
determined uniquely ({} 5), which will be demonstrated 
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812 THE STRUCTURE FACTOR OF ORIENTATIONALLY DISORDERED CRYSTALS 

with an example (§ 6). Finally, we shall give the 
modifications to the formulation which are necessary 
when the point group of the crystal and the site group 
are different. 

2. M a t h e m a t i c a l  pre l iminaries  and  n o m e n c l a t u r e  

We will use the following symbols and definitions" 

G: space group of the crystal; 

Go;P;II: point group of G; point site group of the lattice 
site on which the center of mass of the molecule is 
located; molecular point group; 

Plv(8,¢), l l t r (O' ,¢ ' ) :  symmetry-adapted functions 
(SAF) for the point groups P and/ / ,  respectively; 

J/lv~(P,  II;co): mixed rotator functions. 

The SAF's are defined in terms of spherical 
harmonics Ytm(O,¢): 

+! 

Pzv(O,q~) : ~. Ytm(O,~o) P t (1) rnl~ 
m=-l 

+l 
IIlv(O',~O') = ~. Vlm(O',(p') Illmv. (2) 

m=-l 

Unprimed coordinates r = (r, 0,~p) refer to an orthog- 
onal coordinate system S fixed in the crystal, primed 
ones r' = (r',O',~o') - (r,O',~o') to an analogous system 
Z' fixed in the molecule. The origin of Z and Z' 
coincide, therefore r and r' are identical. Indices l and 
m have their usual meaning. Greek indices like y,r (used 
later) label irreducible representations of the point 
groups in question. In principle there are 2l + 1 indices 
y for a given l. But only very few or even none of them, 
depending on l, refer to totally symmetric SAF's 
belonging to the so-called unit representation. Since in 
what follows we will need only totally symmetric 
SAF's, all Greek indices used from now on refer to unit 
representations (see § 4). t Pnv,//lmv are unitary matrices 
of dimension 2l + 1. They can be chosen in such a way 
that the SAF's are real functions. Again, we will need 
only those columns of the matrices which refer to 
totally symmetric SAF's. SAF's for all crystallo- 
graphic point groups may be obtained from Bradley & 
Cracknell (1972). 'Index picking rules' for the selection 
of linear combinations of Elm for crystallographic point 
groups have also been given by Kurki-Suonio (1977). 
One should, however, bear in mind molecules with 
non-crystallographic point groups, e.g. with a fivefold 
axis of symmetry. They also might form orien- 
tationally disordered crystals. In these cases the totally 
symmetric SAF's may be calculated by projection 
operator techniques (Bradley & Cracknell, 1972) or, in 
simple cases, by inspection. Their number n(lI ,  l), for a 
few non-crystallographic point groups, will be given in 

Table 2(b); Table 2(a) contains the same information 
for crystallographic point groups. 

Spherical harmonics YIm can be transformed from 
the primed to the unprimed coordinate system by using 
Wigner's ~ functions (Wigner, 1959; Edmonds, 1964) 

+l 

Ylm(O',~O') = E Ylm,(O,(o)(-z/lm, m(co). (3) 
m' =-I 

Here co = (a,fl,7) is the set of Eulerian angles 
transforming Z into S '  (Edmonds, 1964). We write 
down the integral representation 

(~¢l,m(co) = f r~m,(O,q))Ylm(O',~O' ) dr (4)  

with dr = sin O dO do and the orthogonality relations: 

. ~ ,  *It f '~  m',m, (co) ~ ~;m~(co) sin fl d fl da dy 

87T 2 

- 2l  I + 1 ~lt 12 (~m'~m~ 6m, m2" (5 )  

In complete analogy with (3)-(5) we now introduce 
mixed rotator functions J~'~ (co) -./Y~T (P,//;co): 

n(P,l) 
/-//x(0t,(P') = Z Plv(Oo)j~lvT(O.)) (6 /  

v=l  

r = 1 . . . . .  n( l l ,  l) 

,~/tv. (co)= J'P'~v(O,(o)Ilt. (0',(o') dr (7) 

*/I /2 f ~ ' v : , ( c o ) , Z / v : ~ ( c o )  sin fl dfl da dy 

87[ 2 

- 2l I + 1 dr,t2 dr,r2 6,,T2" (8) 

From the definitions (1), (2), (3), and by equations (4) 
and (7), the mixed rotator functions can be written in 
terms of Wigner functions" 

+l 

• #'tv~ (co)= Z ~tm,m(co) P*!v HtmT • (9) 
m'm=-I 

From equations (5) and (9) the function of lowest order 
is found to be a constant: ,~'° 1 (w) = 1 for an arbitrary 
pair of point groups P, IL 

The tetrahedral rotator functions introduced by 
James & Keenan (1958),. and the cubic rotator 
functions applied by Press & Hfiller (1973) coincide 
with the J / ' s  defined here if the appropriate cubic point 
groups are used for P and H. From (9) it is clear that 
only the Wigner functions ~tm,m(co ) are necessary for a 
calculation of the ~//'s since the unitary matrices pt  m+ r, 
H ~  are tabulated anyhow (Bradley & Cracknell, 
1972). From a practical point of view it is hardly 
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necessary to go beyond l = 10 (or 12 as a maximum) at 
the present time, because the experimental data known 
so far for orientationally disordered crystals do not 
allow one to determine higher expansion coefficients 
(see §§4, 5, 6). The experimental situation might, 
however, be improved by the application of, for 
example, high-resolution methods. 

3. Scattering-length density and its Fourier transform 

Here we will briefly derive the rotational form factor 
introduced by Press & Hfiller (1973) in terms of the 
functions defined in § 2. The nuclear scattering length b 
used in this paper may be replaced by the form factorf  
for X-ray experiments in the final expressions (27) and 
(27') as long as non-spherically distributed electrons 
can be neglected. 

In a rigid molecule the atoms of the chemical species 
s with scattering length b s are distributed, according to 
the molecular symmetry/ / ,  on shells of radius r' s = r s 
with coordinates 

! ! 
r'sl = (rs,Ost,q~si), 

where the index i labels symmetrically equivalent 
atoms. The scattering-length density b(r') in a 
molecular frame 27' is then 

b(r') = Y. bSl(r'), (10) 
s , t  

with 

bs 
bS~(r ') = - ~  6(r' - rs) O(cos O' - cos 0'$t ) x ~(~o' - ~o'l) 

(11) 
and 

f bSt(r ') dr' = b s. (12) 

b(r') is invariant under all operations of the molecular 
point group /7, and so the SAF's HtT(O'~o' ) are the 
'natural' functions for a description in terms of 
spherical harmonics: 

b(r') = Z Y blS~(r)IltT( O' ~o') (13) 
5, t IT 

with 

blSi(r)= f bSi(r')HtT(O' tp') dr ', (14) 

where we have assumed that real SAF's have been 
chosen. 

Combining (11) and (14) we may express (13) as 

b$ 
b(r') = Z --~ J(r - rs)[ISh lll~(O' ~0') (15) 

$1-r 

with 

/;/~T = ~/ /IT (0't ~0~i)" (1 6) 
i 

The expansion (15) is, among all conceivable expan- 
sions in the Ylm(O'(o'), distinguished by the fact that it 
needs the smallest number of shell structure constants 
/:/~T- The index z in (1 6) runs over all totally symmetric 
SAF's for a given l (Tables 2a, 2b). By using (6) a 
particular molecular orientation given by the Eulerian 
angles o9 and b(r') is expressed in the unprimed system 
27 

b(r)= Z ~ J ( r -  rs) Z fI1, Ptv(O~o),-,dZt,,T(a)). (17) 
l w  $ 

In the system fixed in the crystal the averaged 
scattering-length density a(r) must be invariant under 
the site group P 

a(r) = ~ a~v(r)Ptv(O~o) (18) 
sly 

and a~v(r ) may be written as 

aslv(r) = b s cSttv 6(r - rs)/r 1. (19) 

It is the quantity c~tv which is determined directly from 
an experiment. Following Press & H/filler (1973)we 
introduce a probability density function f ( w )  for the 
orientation of 27' with respect to 27: 

f ( w )  = ~ Mt,,T,/f'~T(W). (20) 
Iwc 

1 , The Mt w are constants. The number of MvT s will be 
determined in § 4. A consequence of the normalization 
condition for f(o9) [ff(co) do) = 1] is that the lowest- 
order constant is fixed: M°l = 1/8n 2. 

a(r) then takes the form 

a(r) = f f ( m )  b(r) dw (21) 

with do) = sin fldfldadT. From (8), (17), (20) and (21) 
we obtain 

8n 2 
a(r) = ~. b s ~(r - rs)/r z Z 

21 + 1 lvT 

X Pry (O~o) M ~  [-I]T. (22) 

The expansions (18) and (22) for a(r) must be identical. 
Therefore the experimental constants dry are given by 

87~ 2 
CStv- 2l + 1 ~ MtT [Tst~" (23) 

T 

In the rigid-molecule approximation all the /:/~v are 
numbers which can be calculated from the molecular 
geometry. So the Mtw are free parameters which 
ultimately can be determined from the experiment. 
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In an analysis of the Bragg scattering one needs the 
average structure factor F(Q)  of the unit cell. We will, 
at first, assume that the cell contains only one molecule, 
the center of mass of which coincides with the origin of 
27. 

with 

Then 

P(Q) = e-~e' a(Q) (24) 

a(Q) = fa(r)e iQ' d 3 r, (25) 

where fl is the temperature factor of the whole 
molecule, a(Q) is the rotational form factor of the 
molecule. Terms coupling translational and rotational 
degrees of freedom as discussed recently by Press, 
Grimm & Hfiller (1979) have been omitted. 

With the expansion 

oo n(v,l) 

eiQ'= 47t ~7 Y. iljl(Qr) × Plv(Otp)PIv(O~), (26) 
1 = 0  v = 1 

where j t  is a spherical Bessel function and the other 
symbols are given by r = (r,O,(0) and Q = (Q,O,~),  we 
obtain 

a(O) = 4 z ~  itjl(Qrs)bsCslvPlv(O~). (27) 
s ly  

4. The number of symmetry-adapted functions 

For the crystallographic point groups the SAF's  are 
tabulated in a condensed, symbolic form (Bradley & 
Cracknell, 1972). For a further discussion of (23) we 
will also need, however, their number n(ll, l) for 
non-crystallographic point groups. The general expres- 
sion for n(H,l) is 

1 
n(P,l) = -~ ~ ,  Zct)(g). (28) 

I 

g~: P 

Here the sum runs over all the h different group 
elements g. For a rotation by an angle of 2zrn/N 
corresponding to the operations of an N-fold axis the 
character 2~0(g) is (Bethe, 1929) 

with 

n n 
X(1)(n,N) = o I sin (21 + 1) - -  zc/sin - -  7r, (29) 

N N 

a t = 1 for proper rotations 

a t = (--1) 1 for improper rotations. 

Since the characters Z(t)(g) are the same for all the 
conjugate elements belonging to one class, n(P,l) may 
be easily computed from the knowledge of the classes 
o f P  (Ljubarski, 1962) and from (29). 

Algebraic expressions for the non-cubic groups are 
given in Table 1, numerical results, together with the 
n(P,l) for the cubic groups extracted from Bradley & 
Cracknell (1972) are compiled in Tables 2(a) and 2(b). 

The old Schoenflies notation is used in Tables 1 and 
2(b) because, apparently, there is no Her rmann-  
Mauguin nomenclature for non-crystallographic point 
groups in common use. In solid-state physics and in 
theoretical chemistry only Schoenflies symbols are 
applied (Ljubarski, 1962; Hochstrasser, 1 9 6 6 ) t o  
them. 

Two particularly simple cases will be considered 
separately, because they occur rather often in conjunc- 
tion with rotationally disordered molecules. Coo~ is the 
point group of linear molecules like OH-,  CN-.  For 
every l there is only one SAF, namely Ylm=o(O'¢'). 
Similarly, linear molecules with an inversion center like 
H2,N2,D 2 obey D~h symmetry. In this case only the 
Ylm=o(O' q)') with even/ 's  are allowed SAF's.  

5. The number of free parameters, and their 
determination 

Returning to equation (23), 

87~2  n ( n , l )  

c~v- 2l + 1 Z I-PIT MtT, 
" r = l  

y = 1, ..., n(P,l), r = 1, ..., n(II, l), s = 1, ..., n s (= 
number of shells), we realize that it actually represents, 
for fixed l, a system of linear equations for the 

Table 1. Algebraic expressions giving the number 
n (P, l) o f  totally symmetric SAF's for  non- 

cubic groups 

The expressions are also valid for non-crystallographic point groups. 

P n (P, l) 

C. 2[I/nl + 1 
II/nl 

C.~ [1/n] +½[1 + (-1)q + (-1) I x" (-1) .... 
v=l 

D. [l/n] + ½[1 + (-1)q 

Cnv [l/n] + 1 
[l/n] 

D,h ½{[l/n]+ 1 +(-- ly[ l  + \~ (--l)v"l} 
v = l  

[I/nl 
$2, [1/n] + ½11 + (--1) t] + (--1) / x• (--)"¢"+" 

v = l  

[t/nl 
Ond ½{[1/nl + 1 + (-1)t[1 + ~ (-1)v("+l)]} 

,,=1 

Coo v 1 

Doom ½[1 + (-- 1)q 

[l/n] = integer part of l/n. 
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determination of the unknown parameters MtT. There 
are Npa r such parameters and 

Npa r = n ( P , l )  n ( H , l ) .  

The system decays into n(P,l) subsystems, the index 
), being constant for each subsystem. Within each 

subsystem we have n s equations for the n(H,l) 
unknown quantities MtT (y is fixed) and the unknown 
parameters are distinct in different subsystems. So we 
may set 7 = 1, 2 . . . . .  n(P,l). 

If the number of occupied shells is less than the 
number n(H,l) of totally symmetric H functions, then 

Table 2. Numerical values of the n (P, l ) for  crystallographic and non-crystallographic point groups 

Groups marked with an L are the Laue groups: owing to the center of inversion they have only even-/SAF's.  The heavy black dots indicate 
that all odd SAF's vanish. 
In every column the string enclosed between two horizontal bars is obtained by adding the step A to the preceding string. Step widths A 
marked with an asterisk (d*) indicate that n (P, l) is increased by A* only for even l :n  (P, l) = 0 for l = 2m + 1 in these cases. 

1 2 

1 i 

L 

2 4* 

1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 

1 

1 

3 

m 

5 

5 

7 

9 

9 

1 

5 

9 

13 

L7 

21 

25 

29 

3 4 5 

2 
2 m - 

m 

L 

2 1 2* 

1 
1 
3 
3 
5 
5 
7 
7 
9 
9 

11 
11 
13 
13 
15 
15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 

3 

5 

7 

9 

11 

13 

15 

6 7 8 

222 mm2 m m m  

L 

I i 1" 

1 1 1 
0 1 • 
2 2 2 
1 2 • 
3 3 3 
2 3 • 
4 4 4 
3 4 • 
5 5 5 
4 5 • 
6 6 6 
5 6 • 
7 7 7 
6 7 • 
8 8 8 
7 8 • 

9 10 11 12 I3 14 15 

4 4 
4 4 - 422 4mm 42m - m m  

m m 

L L 

2 2 2* 1 1 1 1" 

1 1 1 1 1 1 1 1 
1 0 • 0 I 0 • 1 
1 1 1 1 1 1 1 1 
1 2 • 0 1 1 • 3 
3 3 3 2 2 2 2 3 
3 2 • 1 2 1 • 3 
3 3 3 2 2 2 2 5 
3 4 • 1 2 2 • 5 
5 5 5 3 3 3 3 5 
5 4 • 2 3 2 • 7 
5 5 5 3 3 3 3 7 

6_ • 2_ 3_ 3_ • 7_ 
7 7 7 4 4 4 4 9 
7 6 • 3 4 3 • 9 
7 7 7 4 4 4 4 9 
Z 8_ • 3 4_ 4_ • 11 

(a) Crystallographic point groups 

17 18 19 

J 32 3m 

L 

4* 2 1 

20 21 22 

3m 6 

L 

2* 2 2 

1 1 
• 1 

1 1 
• 1 
2 1 
• 1 
3 3 

• 3 
3 3 
• 3 
4 3 
• 3 
5 5 

• 5 
5 5 

• 5 

23 24 25 26 27 

6 6 
- 622 6ram 62m - m m  
m m 

L L 

2* 1 1 1 1" 

1 1 1 1 1 1 
0 • 0 1 0 • 
1 1 1 1 1 1 
2 • o 1 1 • 
1 1 I 1 1 1 
2_ • O_ 1_ 1 O__ 
3 3 2 2 2 2 
2 • 1 2 1 • 
3 3 2 2 2 2 
4 • 1 2 2 • 
3 3 2 2 2 2 
4 • 1 2 2 • 
5 5 3 3 3 3 
4 • 2 3 2 • 
5 5 3 3 3 3 
6 • 2 3 3 • 

28 29 30 31 32 

23 m3 432 d,3m m3m 

L L 

1 2* 1 1 1" 

1 1 1 1 1 
o • o o • 
0 0 0 0 0 
1 • o 1 • 
1 1 1 1 1 
o • o o • 
2 2 I 1 I 
1 • o 1 • 
1 1 1 1 1 
2 • 1 1 • 
2 2 1 1 1 
1 • o 1 • 
3 3 2 2 2 
2 • 1 1 • 
2 2 1 1 1 
3 • 1 2 • 
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Table 2 (cont.) 

(b) Non-crystallographic point groups 

l=  0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 2 3 4 5 6 7 

Cs Csh D5 C5~ Dsh Slo Dsa 
2 1 2 1 1 4* 2* 

1 1 1 1 1 1 1 
1 0 0 1 0 • • 
1 1 1 1 1 1 1 
1 0 0 1 0 • • 
1 1 1 1 1 1 1 
3 2 1 2 1 • • 
3 1 2 2 1 3 2 
3 2 1 2 1 • • 
3 1 2 2 1 3 2 
3 2 1 2 1 • • 
5 3 3 3 2 5 3 
5 2 2 3 1 • • 
5 3 3 3 2 5 3 
5 2 2 3 1 • • 
5 3 3 3 2 5 3 
7 4 3 4 2 • • 

8 9 10 11 12 13 14 

C8 Csh D8 C8~ Dsh Ss Dan 
2 2* 1 1 1" 2 1 

I 1 1 1 1 1 1 
1 • 0 1 • 0 0 
1 1 1 1 1 1 1 
I • 0 1 • 0 0 
1 1 1 1 1 1 1 
1 • 0 1 • 0 0 
1 1 1 1 1 1 1 
1 • 0 1 • 0 0 
3 3 2 2 2 1 1 
3 • 1 2 • 2 1 
3 3 2 2 2 1 1 
3 • 1 2 • 2 1 
3 3 2 2 2 1 1 
3 • 1 2 • 2 1 
3 3 2 2 2 1 1 
3_ • !_ 2_ • 2_ 1_ 

15 16 

Coo,, Dooh 
0 0* 

1 1 
1 • 
1 1 
1 • 
1 1 
1 • 
1 1 
1 • 
1 1 
1 • 
1 1 
1 • 
1 1 
1 • 
1 1 
1 • 

the parameters  MZw cannot  be determined uniquely: 
only linear constra int  equations between the M t can be 
formulated in this case. 

For  n, = n(II, l) a unique solution in principle is 
possible provided the matrix of  the part icular  sub- 
system is nonsingular ,  or 

det/=/~ 4= 0, s = 1 , . . . ,  ns = n(H,l) 

r =  1 . . . .  , n(H,l). 

A necessary condit ion is that  no two rows s and s' 4: s 
be equal: 

- 

This condit ion would be violated, if two shells (r s 4= rs,) 
were occupied by the same number  of  atoms at the 
same angular  positions: (0;i,~0;i) = (0;,t,~0;,l). The 
simplest conceivable example for this is a linear 
molecule A2B v For  n, > n(II, l) the (sub-) system of  
equations can be solved with a least-squares algorithm. 

The limitation of  the method indicated here is a result 
of  the expansion (20) of  f (co)  (cf H/filler & Press, 
1979). 

6. Example:  C2CI ~ 

As an illustration we take C2C16. Crystals  of  this 
compound  are orientat ionally disordered for 345 < T < 
458 K (Gerlach,  1979; Gerlach,  Hohlwein, Prandl  & 
Schulz, 1981). The structure is cubic with the space 
group Im3m and with two molecules per unit cell. The 
centers of  mass of  the molecules occupy the 2(a) " 
position (International Tables for X-ray Crystallog- 

raphy, 1976). With the site symmetry  P = m3m and 
the molecular  symmet ry  H = 3m (Morino & Yuwasaki,  
1949), the number  of  totally symmetr ic  SAF's  is n(P,l) 
= 1, I, 1 and n(II, l) = 1, 2, 3 for l = 0, 4, 6, 
respectively (Table 2a). The carbon atoms form a 
dumbbell  along the trigonal axis, and the chlorine 
a toms a tr igonal antiprism. So we have two occupied 
shells. The SAF's  IItT(O'q)' ) together with the/'/~T are 
given in Table 3. F rom the analysis of  {} 5 we see that  
the two constants  of  fourth order M~I, M~2 can be 
determined uniquely. This is not the case for the M% (r 
= 1, 2, 3) or any constants  of  higher order l. As a trivial 
remark we add that  in a hypothet ical  molecule 
containing only the chlorine a toms (n s = 1) even the 
fourth-order  constants  cannot  be determined 
separately. 

F rom the definition o f f ( c o )  we may derive several 
marginal  distributions, e.g. 

f (afll y) = f f (afly) dy (30) 

f (a l f ly )= ff(afly)sinfldfldy.  (31) 

They can be used to visualize the distribution of  the 
molecular  axes. In the C2C16 case, for instance, the 
distribution of  the threefold molecular  axes is given by 

1 
f ( a , f l ly )  = - -  + M141 ~f/'41 (otfl[ ~) (32) 

47r 

with 

~,4 (afll y) = f~,4 (afly) dy 

4zt 

= T 
(33) 
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Table 3. The totally symmetric SAF's lIt~ (O' ~o') for the point group 3m and the molecular structure constant~ 
HI, for C : C I  6 (s = 1 - C ;  s = 2 = C1) 

0 is the angle between the trigonal axis and the line between the molecular center of mass and one of the chlorine atoms. 

/=0 

/=4 

I=6 

/7,~ (0', <0') //~, = Bc,, /z{ =/~c,,, 

1 
//o~ (0', ~p') - 

//41 (0 ' ,  ¢p') ---- Y4o 

/-/42 (0', ~') 
1 

Vz 

/-/61 (0 ' ,  ¢p') = Y6o 

1 
/-/62 ( 0 "  ¢P') V,~  ( Y63 - Y6J) 

1 
/ ' /64(0 t, ~0') ~ (Y66 -k- Y66) 

J 13 

7/ 

(32 cos 4 8~ - 30 cos 2 0~ + 3) 

9,/7o 
cos 8~ sin 3 8~ 

4 zc 

3,/,3 
16 zr 

(231 cos 6 O~ --315 cos 4 O~ + 105 cos 2 O~ - 5) 

3 ~/2730 

16 ~r 
- -  cos  8~ sin s O~ (11 cos  2 0~ -- 3) 

sin 6 0~) 
32 zr 

Here  the Euler ian  angles  a and  fl co inc ide  with  the 
polar  angles ~0,0 in Z and . / f /~l(c°)  has  been derived 
from the c_Z funct ions  ( E d m o n d s ,  1964). P4a,(fl, a) =-- 
P4a,(O,~o) is the only S A F  of  the poin t  g roup  m3m for l 
= 4 .  

7. M o r e  than  o n e  o r i e n t a t i o n a l l y  d i s o r d e r e d  m o l e c u l e  
per unit  cell 

Tab le  4. The calculation of  the polar angles of  Q in the 
local coordinate system S i appropriate to the 4(a)  site 

in the space group Pa3 

1 2 3 4 

(000) 

( ~ io) 

v~ 

(II2) 

v~ 

(111) 

v~ 

We next a ssume tha t  the m s y m m e t r i c a l l y  equiva len t  n~ 
posi t ions R j ( j  = 1 . . . .  , m) o f  a lat t ice complex  with 
mult ipl ici ty m are the centers  o f  g rav i ty  o f  m 
or ien ta t iona l ly  d isordered molecules .  At  each  pos i t ion  ;J 
Rj we define a local o r t h o g o n a l  coo rd ina t e  s y s t e m  Zj 
which is adapted  to the site g roup  P.  In genera l  the  Zj h - k  
will not  be parallel  nor  will they  co inc ide  with  the h, v~ 
crys ta l  coord ina te  sys t em Z which  is a s s u m e d  to be 
o r thogona l  also. Z' and the Z'j will co inc ide  in a un ique  ~j h + k - 21 
way  only  in s y m m o r p h i c  space  g roups ,  and  then aga in  ¢g 
only if P --- G 0. This  cond i t ion  applies  for the lat t ice 
complexes  with the lowest  mul t ipl ic i ty ,  e.g. for the 1 (a) h ÷ ~ + 
or l(b)  complex  in Pm3m and  for 4(a)  or 4(b) in l, ,/3 
Fm3m. 

If  referred to local axes Zj ,  the ro ta t iona l  form fac tor  cos oj ~ h + k ÷ / 
ag(Q), given in (28), reads 

tan q~ 
a j (Q)  = 4zr Y itjl(Qrs) b s cStv Ptv(Oj %). (27 ' )  

sly 

V'~ H 

1 h + k - 2 l  
. 

V/3 h - k 

i}½0) 

(I10) 

(iJ2) 
v~ 

( i l l )  

h + k  

v~ 

- h  + k - 21 

- h + k + l  

vq 

1 - h + k + l  

v~ . 

I - h  + k - 21 

V/3 h + k  

(i~O) 

v~ 

tii2) 
v~ 

(ii~) 
v~ 

--h + k 

v~ 

- h  .- k - 21 

v~ 

- h - k + l  

v5 

1 - h - k  + I 

vq 

I - - h - k  - 21 

(iiO) 

v~ 

( i l l )  
v~- 

- h  - k 

v~ 

h - - k - 2 1  

h - k + l  

vq 

1 h - k + l  

v5 H 

1 h - k - 2 1  

V/3 - h + k  ~ - h - k  
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Oj, q~j are the angular coordinates of Q expressed in 27i" 
This can be easily obtained from the following 
relations: 

and 

Q =  2zrH 

H = h~ + kr/+ l~ 

-: hj ~j + kj ~j -.}- lj ~j, 

where ~,r/,¢; ~j,~j,~j a r e  the unit basis vectors of 27 and 
27j, respectively. 

Let flj be the anisotropic temperature factor 
appropriate to the local system Z'j. Then the complete 
structure factor will be" 

F(Q) = ~ d °Rj e ~QajQ aj(Q). (34) 
J 

One could of course transform the elv(Oj ~j), with (3), 
to the crystal system Z'. This procedure, however, 
would require all the Wigner functions ~,m(OOj) in 
addition to the SAF's Ply (0~) .  

As an example the calculation of Q j, Oj, oj  for the 
lattice site 4(a) of the space group Pa3 (International 
Tables for  X-ray Crystallography, 1976) is given in 
Table 4. 

The author is indebted to Professor A. Hiiller and Dr 
W. Press for discussion and for making available 
original work prior to publication. 

This investigation has been supported by the 
Bundesministerium ffir Forschung und Technologie 
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